6 secrets of building better models

6 secrets of building better models part three: feature engineering

Feature Engineering is really just a fancy term for creating new data. Very often we can help an algorithm build better models by preparing the input data in a way that allows it to detect a clearer signal in the often noisy data. In machine learning variables are often referred to as ‘features’, so feature engineering refers to the transformation of variables or the creation of new ones.

6 secrets of building better models part five: meta models

The idea of meta modelling is to build a predictive model using the predictions or scores generated by another model. By adding the predictive scores generated by an initial modelling algorithm to an existing pool of predictor fields, a second algorithm can then exploit these scores in to build a final more accurate model.

6 secrets of building better models part six: split models

Split models or split population modelling is another technique that allows the user to build multiple models which can then be combined to create a single prediction. The idea with split modelling is that if the data represent different populations or contain separate groups that behave in very different ways, assuming that a single model can explain all the inherent variability across these distinct populations might be unreasonable.

Download your free copy of our Understanding Significance Testing white paper
Subscribe to our email newsletter today to receive updates on the latest news, tutorials and events, and get your free copy of our latest white paper.
We respect your privacy. Your information is safe and will never be shared.
Don't miss out. Subscribe today.
×
×
WordPress Popup Plugin
Scroll to Top