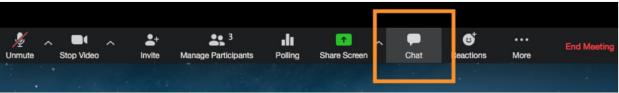


Getting started with Decision Trees in SPSS Statistics

Jarlath Quinn


Introduction to Decision Trees

Jarlath Quinn

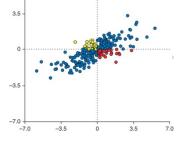
Just waiting for all attendees to join...

FAQ's

- Is this session being recorded? Yes
- Can I get a copy of the slides? Yes, we'll email links to download materials after the session has ended.
- Can we arrange a re-run for colleagues? Yes, just ask us.
- How can I ask questions? All lines are muted so please use the chat panel if we run out of time we will follow up with you.

- Gold accredited partner to IBM, Predictive Solutions and DataRobot specialising in advanced analytics & big data technologies
- Work with open-source technologies (R, Python, Spark etc.)
- Team each have 15 to 30 years of experience working in the advanced and predictive analytics industry

- Deep experience of applied advanced analytics applications across sectors
 - Retail
 - Gaming
 - Utilities
 - Insurance
 - Telecommunications
 - Media
 - FMCG


"Predictive analytics encompasses a variety
of statistical techniques from data
mining, predictive modelling, and machine
learning, that analyze current and historical facts

to make <u>predictions</u> about future or otherwise unknown events."

What do we mean by 'Predictive Analytics'?

- It's different from Business Intelligence or MI reporting
- Actually, it's not always about prediction
- However, Predictive Analytics does create important new data
- These data take the form of estimates, probabilities, forecasts,
 recommendations, propensity scores, classifications or likelihood values
- Which in turn can be incorporated into key operational and/or insight systems

Types of Predictive Analytics

Classification / Propensity

— Who is most likely to respond / upgrade/recommend/defect based on the historical behavioural data we have about them?

Clustering

 How can I divide my customers into meaningful and usable groups as a framework for marketing communications?

Association & Sequence

— What combinations of product purchases or events co-occur more often than normal? What natural affinities exist within the data?

Time Series

— What will product demand/revenue/website hits/visitor numbers look like in the next hour/day/month/quarter/ year?

Where do Decision Trees fit within Predictive Analytics?

- Decision trees are used extensively and widely within Predictive Analytics
- Decision trees can be used to
 - Build profiles of customers/employees/clients
 - Find key behavioural segments
 - Generate predictive models
- Decision Trees can be expressed as a series of hierarchical rules which means that they can be converted in languages like SQL for database scoring
- Decision Trees are especially popular because
 - they are fairly visual representations of models
 - relatively easy to understand

Understanding Decision Trees – a worked example

• What were the most important factors determining survival during the sinking of the RMS Titanic?

Gender?

Survival on the RMS Titanic

		Count	Percent %
survive	Did not survive	1490	68%
	Survived	711	32%
	Total	2201	100%

Age?

Class?

Statistical Tests Like Chi Square help to answer this

Survival on the RMS Titanic

		sex					
		f€	emale	male			
		Count	Column Percent %	Count	Column Percent %		
survive	Did not survive	126	26.8%	1364	78.8%		
	Survived	344	73.2%	367	21.2%		
	Total	470	100.0%	1731	100.0%		

Pearson Chi-Square Tests

		sex
survive	Chi-square	456.874
	df	1
	Sig.	.000*

Statistical Tests Like Chi Square help to answer this

Survival on the RMS Titanic

		age					
		adult		child			
		Count	Column Percent %	Count	Column Percent %		
survive	Did not survive	1438	68.7%	52	47.7%		
	Survived	654	31.3%	57	52.3%		
	Total	2092	100.0%	109	100.0%		

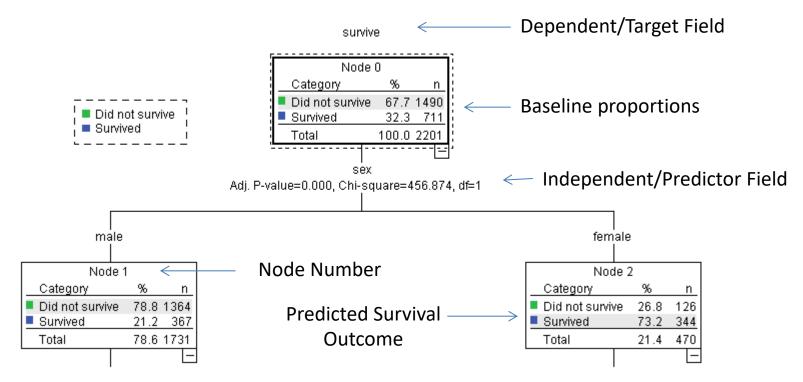
Pearson Chi-Square Tests

		age
survive	Chi-square	20.956
	df	1
	Sig.	.000

Statistical Tests Like Chi Square help to answer this

Survival on the RMS Titanic

		class								
		1st			2nd	3rd		(crew	
		Count	Column Percent %							
survive	Did not survive	122	37.5%	167	58.6%	528	74.8%	673	76.0%	
	Survived	203	62.5%	118	41.4%	178	25.2%	212	24.0%	
	Total	325	100.0%	285	100.0%	706	100.0%	885	100.0%	


Pearson Chi-Square Tests

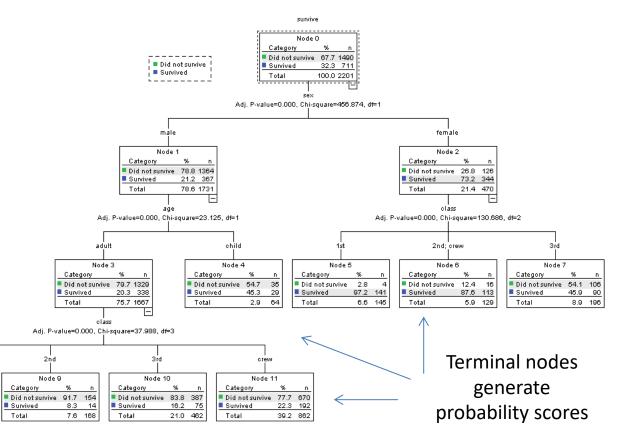
		class
survive	Chi-square	190.401
	df	3
	Sig.	.000*

Gender is most important

...and a CHAID Decision tree will reflect this....

Full CHAID Decision Tree

C.H.A.I.D Chi-Square Automatic Interaction Detector

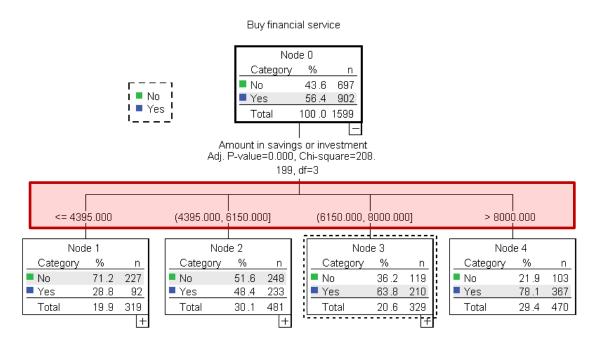

Node 8

67.4

32.6

8.0 175

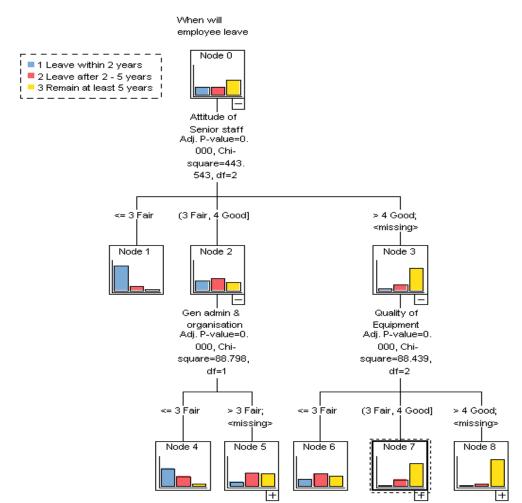
Category

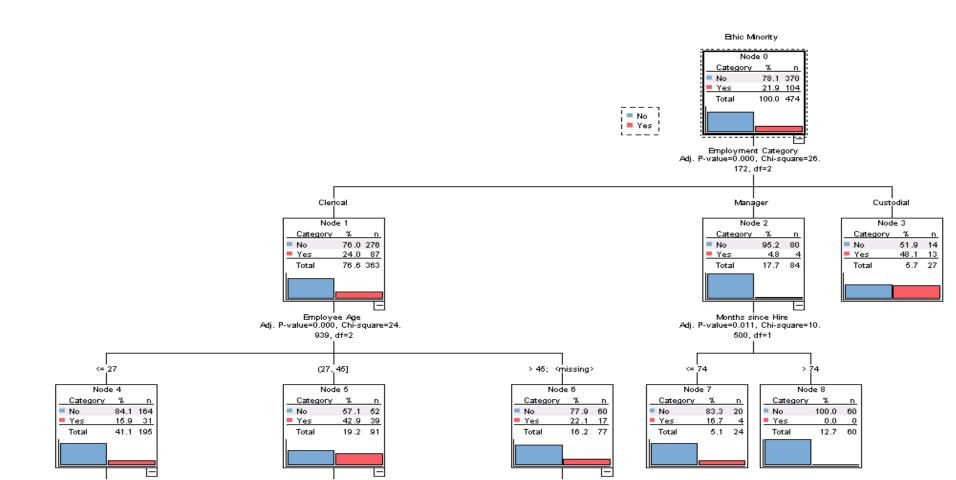


Merging/Splitting in CHAID Trees

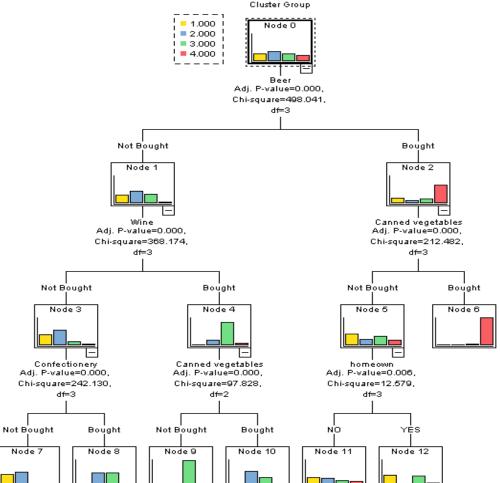
Decision Trees can merge values of numeric and categorical predictors together

This makes the tree more efficient and easier to read




Let's see a demonstration...

Drivers of Satisfaction



Demographic Profiling

Interpreting Clusters

Online training materials free to Smart Vision customers or available for purchase

Factor and Cluster Analysis with IBM SPSS Statistics

£75.00 Jarlath Quinn

Introduction to Time Series Forecasting with IBM SPSS Statistics

£75.00 Jarlath Quinn

Understanding and applying logistic regression techniques in SPSS Statistics

£75.00 Jarlath Quinn

Understanding and Applying Linear Regression Techniques in SPSS Statistics

£75.00 Jarlath Quinn

£75.00

Jarlath Quinn

Building predictive models in SPSS Modeler

Statistical and significance testing in SPSS Statistics

£75.00 Jarlath Quinn

Introduction to SPSS Modeler

Introduction to IBM SPSS Statistics course

A SELECT INTERNATIONAL COMPANY

Working with Smart Vision Europe

Consulting Services

Project Support

Purchase 1-2 days of consultancy time to have an expert work alongside you on your own project

Analytics Advice

Give us 3-5 days to investigate your data & analytical strategy and we'll present our recommendations re: improvements & alternatives

Analytical Deep-Dive

Let us explore your data landscape to test hypotheses, identify problem areas, find key outcome drivers or develop new applications

Working with Smart Vision Europe

Sourcing Software

- You can buy your analytical software from us often with discounts
- Assist with selection, pilot, implementation & support of analytical tools
- http://www.sv-europe.com/buy-spss-online/

Training

- Formal classroom/virtual training
- Custom course development
- Informal 'bite-size' training split over time

Advice and Support

- 'No strings attached' technical and business advice relating to analytics
- Tracked technical support services around the IBM SPSS product line

Contact us:

+44 (0)207 786 3568

info@sv-europe.com

Twitter: @sveurope

Follow us on Linked In **(iii)**

Sign up for our Newsletter

Thank you