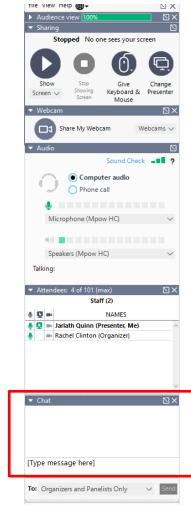


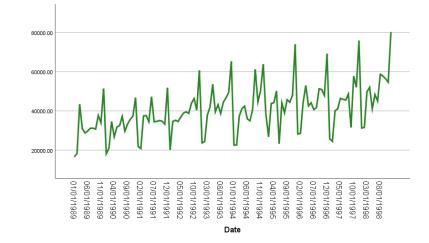
Automated Time Series modelling with DataRobot


Jarlath Quinn

www.sv-europe.com

FAQ's

- Is this session being recorded? Yes
- Can I get a copy of the slides? Yes, we'll email a PDF copy to you after the session has ended.
- Can we arrange a re-run for colleagues? Yes, just ask us.
- How can I ask questions? All lines are muted so please use the chat facility – if we run out of time we will follow up with you.



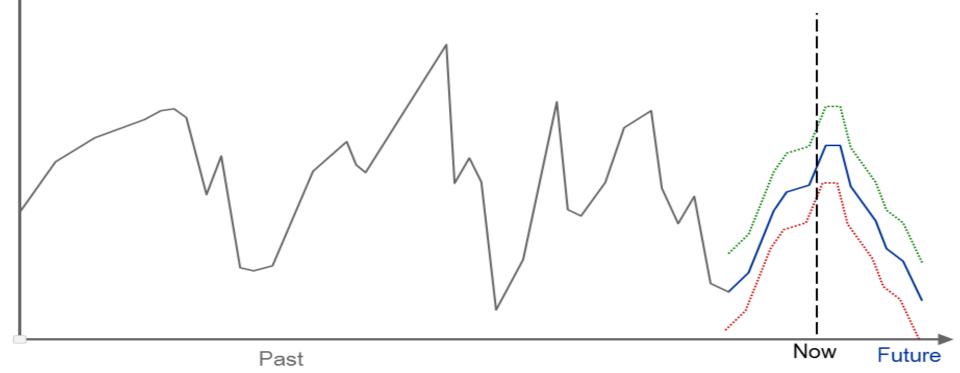
- Premier accredited partner to IBM, Predictive
 Solutions and DataRobot specialising in advanced analytics & big data technologies
- Work with open source technologies (R, Python, Spark etc.)
- Team each has 15 to 30 years of experience working in the advanced and predictive analytics industry

- Deep experience of applied advanced analytics applications across sectors
 - Retail
 - Gaming
 - Utilities
 - Insurance
 - Telecommunications
 - Media
 - FMCG

The Principles of Time Series Forecasting

www.sv-europe.com

What is Time Series?


- A 'Time Series' is simply a series of values of a quantity collected over a specific time period, often with equal intervals between them
- Examples of time series include:
 - Airline passenger numbers for a particular country over the last 40 years
 - Daily website hits during a three-month period
 - Hourly traffic volumes over the course of a week

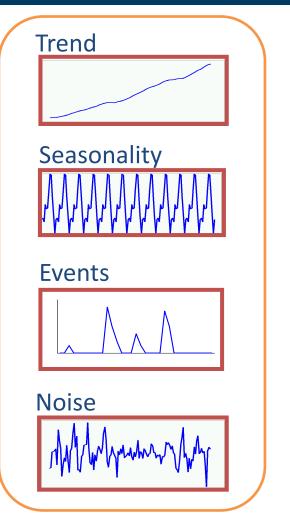
Time Series Forecasting

"'Things' that are observed repeatedly over time, with past values and

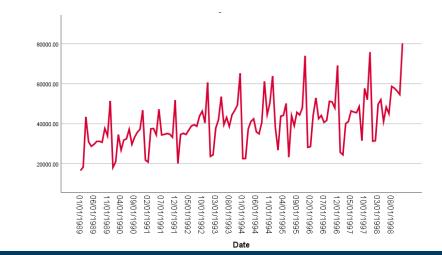
other factors being used to predict future values"

What is Time Series?

- Time series analysis is based on the principle that the past provides a model for the future
- Time series forecasting models often don't require predictor/independent variables
- The goal of time series analysis is to separate the random variability ('noise') from the variability that can be explained
- A single time series may have several elements that enable effective forecasting



What's in a 'Time Series'?


Time Series

Types of Time Series

www.sv-europe.com

Two classic approaches to Time Series forecasting

- ETS (Error, Trend and Seasonality) / Exponential Smoothing models
 - Often used when there are strong seasonal trends (e.g. you see the same patterns from one year to the next)
- **ARIMA** (Autoregression, Integrated, Moving Average)
 - Often used when the only most recent values are needed to forecast what happens next
 - Can incorporate independent 'predictor' variables

Example: Basic Exponential Smoothing Methods

	Non Seasonal	Additive Seasonal	Multiplicative Seasonal
Constant Level		$\sim \sim$	$\sim \sim \sim$
Linear Trend		DDD	AAA
Damped Trend			app
Exponential Trend			NAR

DataRobot also includes a number of advanced machine learning methods

Machine learning and linear models

- RNN, XGBoost, elastic-net, etc.
- Linear trends, Ridge regression, Fourier models

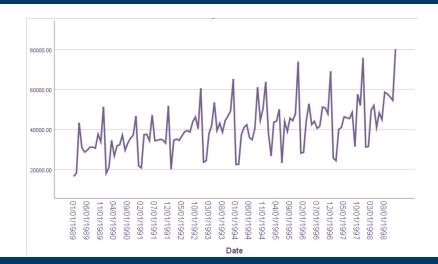
Open Source models

- Facebook Prophet
- Spark
- Eureqa

 Error-Trend-Seasonal exponential smoothing model Error-Trend-Seasonal exponential smoothing model M8 BP69 	Baseline Only (latest) 😋 1 year • 4 months • 6 days 🕇
Ø Prophet Prophet M10 BP61	Date Only ❤ 1 year • 4 months • 6 days 🕇
Ridge Regressor with Forecast Distance Modeling One-Hot Encoding Numeric Data Cleansing Standardize Naive Predictions as Feature Ridge Regressor with Forecast Distance Modeling M11 BP70	No Differencing 😭 1 year • 4 months • 6 days 🕇
eXtreme Gradient Boosted Trees Regressor with Early Stopping (learning rate =0.3) Ordinal encoding of categorical variables Missing Values Imputed Extract Forecast Distance Feature Nave Predictions as Feature and Offset eXtreme Gradient Boosted Trees Regressor with Early Stopping (learning rate =0.3) Text fit on Residuals (L2 / Least Squares Loss) M16 BP74 MON0	With Differencing (average baseline) 😋 1 year • 4 months • 6 days 🕇

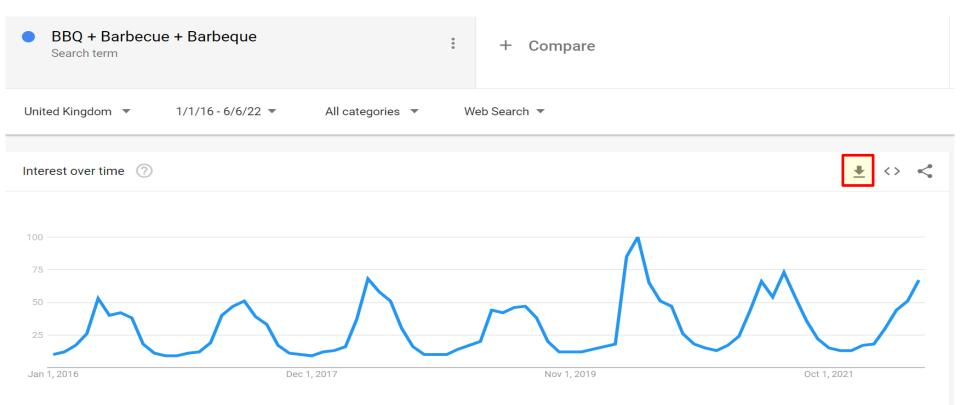
DataRobot automates most steps that are traditionally manually configured

- Uploads, reads and explores the data
- Identifies extremes, missing values and data issues
- Detects the time series periodicity (minutes, days, weeks, months, years etc)
- Detects multiple series and hierarchies
- Creates a portfolio of potential predictor fields in the data
- Identifies how best to test the model using back-steps
- Carries out a range of data preparation steps such as missing value imputations
- Creates a series of Blueprints showing the data preparation steps and configuration of each model
- Generates a leader board of the best performing models
- Creates a series of evaluation plots to test and understand model performance

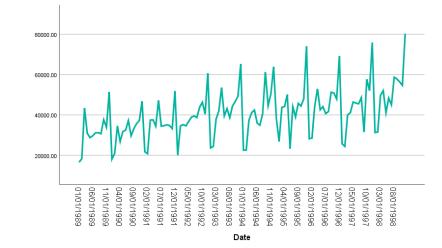

DataRobot uses back tests to test and rank the models

CT INTERNATIONAL COMPANY

Europe

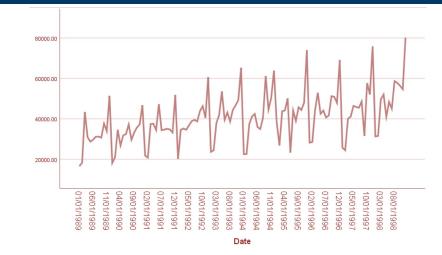


Simple Time Series

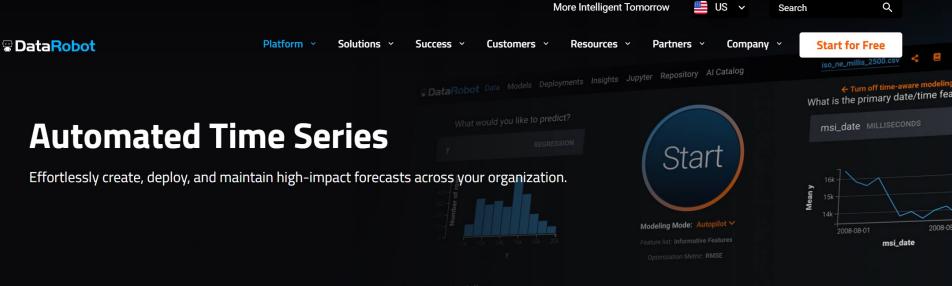

www.sv-europe.com

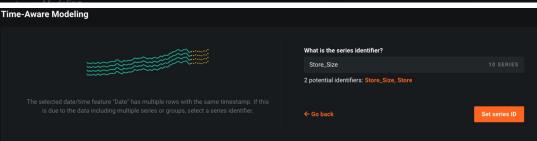
Create your own time series

https://trends.google.com



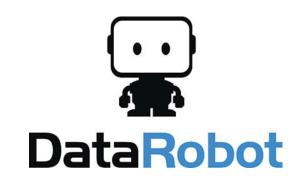
Time Series with Predictors


www.sv-europe.com



Multiple Time Series

www.sv-europe.com



- Fully Automated
- AI-Driven innovative models
- Granular forecasting at scale
- Real-time Anomaly detection
- Easy Integration
- On-Cloud and On-Prem

Please contact Rachel Clinton

rclinton@sv-europe.com

To find out more about how Smart Vision and

DataRobot can help accelerate your

organisation's efforts in Cloud AI

Contact us:

+44 (0)207 786 3568 info@sv-europe.com Twitter: @sveurope Follow us on Linked In Sign up for our Newsletter

Thank you

www.sv-europe.com