

An Introduction to the CRISP DM methodology

John McConnell – Services and Implementation

Rachel Clinton – Business Development

www.sv-europe.com

A SELECT INTERNATIONAL COMPANY

FAQ's

- Is this session being recorded? Yes, you will get a link to re watch and share the session
- Can I get a copy of the slides? You can access a link so you can download them after the event
- Can we arrange a re-run for colleagues? Yes, just ask us.
- How can I ask questions? All lines are muted so please use the chat facility if we run out of time we will follow up with you.

Predictive Analytics for Smarter Business

- Premium, accredited partner to IBM & SAS specialising in the SPSS & SAS Advanced Analytics suites.
- Team each has 20+ years of experience working in the predictive analytic space specifically as senior members of the heritage SPSS team

3 Pillars (high level areas for prediction/data mining)

This is the IBM taxonomy which is a good reference for most (if not all) data mining projects

Generally speaking – in each area – we have a process/lifecycle and a series of events that we look to **predict** and **profile**

The CRISP-DM process

KDnuggets 2014 poll

What main methodology are you using for your analytics, data mining, or data science projects ? [200 votes total] 2014 poll 2007 poll			
CRISP-DM (86)	43%		
My own (55)	27.5%		
SEMMA (17)	8.5%		
Other, not domain-specific (16)	8%		
KDD Process (15)	7.5%		
My organizations' (7)	3.5% 5.3%		
A domain-specific methodology (4)	2% 4.7%		
None (0)	0%		

Regional distribution of voters was

- US/Canada, 45.5%
- Europe, 28.5%
- Asia, 14%
- Latin America, 9.5%
- Other, 2.5%

http://www.kdnuggets.com/2014/10/crisp-dm-top-methodology-analytics-data-mining-data-science-projects.html

People and Roles

Roles and Steps in the CRISP process

The CRISP-DM process

1. Business understanding

- Get a clear understanding of the business objectives
 - To reduce churn rates
 - To acquire valuable customers
 - To cross-sell/up-sell
 - To prevent fraud
- Agree success criteria
 - To reduce out annual churn rate from 5% to 3%
- Assess the situation
- Translate to analytical objectives (if possible)
- Evaluate the cost/benefit
- Clearly understand how action can be taken based on the likely outcomes
 - How to deploy
- Document relevant resources, constraints, systems

A selection of example business objectives

- A water company wants to reduce pollution
- An on-line gaming company want to identify fraudulent bets
- A charity wants to increase supporter lifetime value
- A multi-channel subscription-based magazine want to improve renewal rates
- Local government planners want to know how likely a ward is to sustain next year
- A shipping company wants to identify containers that are likely to contain smuggled items
- A coffee retailer wants to understand what effect price changes will have on demand
- A hospital wants to know how many A&E staff to deploy on each shift
- An on-line retailer wants to increase their repurchase rates

1. Business understanding – Worked Example

- A Retailer wants to
 - Increase revenue and profit
 - By increasing average/total customer Lifetime Value (LTV)
 - They believe they are below their competitive set
- Part of the **strategy** to achieve this is to increase repurchasing
 - They believe they have an issue with repurchase rates for digital customers
- Success Criteria:
 - They have a cost constraint when looking to incentivise repurchase
 - They need to identify at least 40% of customers most likely to repurchase within 20% of all customers
- Analytically speaking they want to:
 - Score each first purchase customer with a propensity to repurchase
 - Identify the b of repurchase (or single purchase)

1. Business Understanding - Hypotheses

- The retailer Business and Analysis teams develop a set of hypothesised drivers of repurchase. These include:
 - Channel experience
 - Products bought (in first purchase)
 - Value of first purchase
 - Whether the first purchase was a promotion
 - Whether subsequent promotions were made
 - And when (timing)
 - Customer life stage
 - Timing of first purchase; month, day of week, time of day
 - Delivery method
 - Reserve and collect, express, etc.

We can model to <u>predict</u> and <u>profile</u> any event across the customer lifecycle...

Modelling Data Window – Churn

a) Use Data we have on the customer to the <u>time before</u> <u>the last period (e.g. month)</u>

Modelling Data Window – Repurchase

The CRISP-DM process

2. Data understanding – High Level

- Identify the **data sources** and **fields** which may have a bearing on the business/analytical objectives
- Review data schemas and any other data documentation
- What looks relevant?
- What are the formats?
 - Databases, text files, excel, etc.
- What are the fieldnames?
 - Metadata
- Crucially ... what is the likely target field that maps to the business objective e.g.
 - Customers purchasing
 - Machinery failing
 - Revenue/Profit/ROI
 - Visits to the web site
 - Denial of service attacks detected
 - Customers churning

2. Data understanding – Low level

- Explore the data
- Typically looking for **patterns** between fields
- Using uni- and bi-variate analyses
 - Examine fields one-by-one or in pairs
 - Often using visualisation tools
- Test hypotheses
 - E.g. Age of donor is a predictor of value
- Validate data
 - Identifies any issues involving anomalies
- Develops understanding and informs modelling

2. Data understanding – Worked Example

We will use IBM/SPSS Modeler to demonstrate the software-related steps in the CRISP process

Modeler maps to that process

We can build a Modeler "stream" to map to that process. Starting with our Target field

2. Data understanding – Audit to Validate

Field	Sample Graph	Measurement	Min	Max	Mean	Std. Dev
FirstOrderMonth		🖋 Continuous	1	12	7.837	3.101
🔆 Sequence		🖋 Continuous	2	276158	140569.181	79657.985
URN_Customer		🖋 Continuous	151914482	31737012258	22090012826.481	7351908174.182
FirstOrder_Channel		Categorical	-	-	-	-
FirstOrder_OrderValue		🖋 Continuous	0.000	5984.300	91.408	117.850
FirstOrder_Delivery_Type		Categorical		-	-	
FirstOrder_odate		🖋 Continuous	2006-08-11	2011-12-05	-	
FirstOrder_NumberOfOrderItems		🖋 Continuous	1	83	2.340	2.515

It is important to check the fields we will use for modelling particularly looking for

- Missing values
- Unusual values
- Invalid values

Base: 225,793 customers

2. Data understanding – Visually exploring relationships

A stacked bar confirms our hypotheses that some channels are more likely to lead to (/drive) repurchase

A web plot also shows that some delivery types and promotions also lead to a higher repurchase %

The CRISP-DM process

3. Data Preparation

- Data Understanding helps design this step
- Together with Data Understanding this can be more time consuming than expected
 - Sometimes 80% of a project
 - Especially for newer projects
- Typically integrates data from different sources
- Aggregates data
- Create composite measures
 - E.g. band variables
 - Apply formulae e.g. compute annualised figures and other ratios
- Comparable to ETL (Extract Transform Load)

3. Data Preparation – Repurchase example

- In our example we received an extract from the Customer Data Warehouse in a single file
 - Often we can liaise with the DBA and the DBA will do some or all of the data prep
- Most often we need to integrate data from multiple files / database tables
- We didn't get all the fields we hypothesised about but we can create one of the missing ones (day of week) using a **Derive** node

Derive field:					
FirstOrderDayOfWeek	1- 2-				
Derive as: Formula Field type: Ordinal Formula:	3- HirstOrdenbyObweek 4- 5-				
<pre>1 datetime_weekday(FirstOrder_odate)</pre>	6- 7-				
	ł	20,000	40,000 Count	eo,boo	80,00
					21

The CRISP-DM process

26

4.Modelling

- Apply a variety of modelling techniques
- Candidate list identified during understanding phase
 - Driven by data types (see later)
 - Constrained by available tools
- 2 broad styles:
 - a) Hypothesis led. Add the fields/predictors that we believe are driving the outcome
 - **b) Data led**. Add more fields at the beginning and incrementally reduce (and/or let the algorithms do that)
- The best performing modelling algorithm is a function of the specific data/problem

4.Modelling – Repurchase rates

5.Evaluation

- Essential that the models are tested against unseen data
- Typically the data is partitioned into 2 (or 3) sets at random e.g. 70%:30%
 - 1. Training (modelling) set
 - 2. Test (holdout) set
 - 3. Evaluation set
- Evaluate against the **success criteria** agreed in the understanding phase
- Often it is about how well the model performs against a given value criteria e.g. revenue
 - Defined in Data Understanding phase

5. Evaluation – Worked Example

When we e

The "nugget" is the built model.

When we edit it we see more detail of the model including:

RepeatPurchase

Predictor Importance

Rules/repurchase profiles

Rule 1 for TRUE (6,121; 0.704) if FirstOrderMonth > 9 and FirstOrderMonth <= 10 and FirstOrderDayOfWeek > 5 and FirstOrder_Promotion in ["F"] and Title in ["Miss" "Dr" "Mrs" "Ms"] and FirstOrder_Delivery_Type in [""] then TRUE

5. Evaluation – Predictive Accuracy

Recall our success criteria (in Business Understanding) was to be able to predict 40% of re-purchasers among 20% of customers This model beats that as it gains (predicts) **56% of re-purchasers in the top 20%**

The CRISP-DM process

6.Deployment (1)

- Could be as simple as a list of names and predictions/scores
 - E.g. a mailing list
- Could be as complex as a model encapsulated as a computer program and embedded in an operational system to predict in real time and automate decisions
 - E.g. a model embedded in a system which sends alerts and triggers
- Could be embedded in a What-if? simulator
- Important to distinguish between a model in the modelling and deployment phases
- Typically...
 - In the modelling phase many different models and modelling options are built and evaluated
 - In the deployment phase the winning model(s) are fixed
 - E.g. we deploy a decision tree with a fixed shape

Modelling Data Window – Repurchase

Modelling Data Window – Scoring new customers

6. Deployment – Repurchase example

In one form or other – and there are many ways we can do this – we plug the winning model into a deployment process. Here as another modeller stream **The predictions are often sent to a database or file ...**

or directly into an operational system

	URN_Customer	PropensityToRepurchase
1	16111698240	0.733
2	31191906246	0.733
3	31629870246	0.733
4	31226022246	0.733
5	31221750240	0.733
6	30504414240	0.733
7	30477786246	0.733
8	30282336240	0.733
9	30249996288	0.733
10	30465336240	0.733
11	31214964240	0.733

6.Deployment (2) (Monitoring)

- If we did our job properly then the deployed model should correspond to what we saw in evaluation
 - Other factors may intervene
- Ongoing evaluation ("monitoring") still needs to happen if models are to be used over time
 - Some models have a longer shelf life than others
- More recently there has been some development of models which adapt/correct themselves to changing circumstances
 - Some level of re-modelling to improve accuracy
 - "Self adapting"
 - More commonly this is achieved through the concept of champion/challenger modelling or model refresh approaches

The CRISP-DM process reprised

Executing a predictive project - summary

- A Predictive Analytics project can be more like a Research & Development project
 - Can we build a successful model?
 - Has anyone done this before?
 - What is the **risk** that we cannot achieve the objectives?
- Hence projects can fail
- It isn't just about the analyst
 - Larger projects usually need a larger (multi-disciplined) team
- Each stage in the CRISP-DM process has detailed tasks and outputs
 - More detail at:

http://www.sv-europe.com/crisp-dm-methodology/

Working with Smart Vision Europe Ltd

- As a premier partner we resell software to you directly
 - We're agile, responsive and generally easier to deal with
- As experts in SPSS / SAS / Analytics / Predictive Analytics we will
 - deliver classroom training courses
 - offer side by side training support
 - offer "skills transfer" consulting
 - run booster and refresher sessions to get more from your SPSS licences
 - Give no strings attached advice
- We're approachable, friendly and pride ourselves on our nononsense approach
 - If you have questions please do email us <u>info@sv-europe.com</u>
 - If you'd like advice, do get in touch and we'll help if we can!

Contact us:

+44 (0)207 786 3568 info@sv-europe.com Twitter: @sveurope Follow us on Linked In Sign up for our Newsletter

Thank you

www.sv-europe.com