Section 6: Analysing Relationships Between Variables

• Choosing a Technique
• The Crosstabs Procedure
• The Chi Square Test
• The Means Procedure
• The Correlations Procedure

So far, any analysis we have done, has been restricted to simple frequency tables and summary statistics. In this section, we’ll begin to look at techniques for analysing the relationships between variables. As with the section on summarising variables, we will use the concept of ‘levels of measurement’ to help guide us through the various options.

Choosing a Technique

There are of course a very wide variety of statistical and analytical procedures available to the data analyst in software packages like SPSS Statistics. In this section, we will introduce some of the most widely-used procedures and explain how to interpret the results. When choosing a particular analytical technique, it’s important to keep in mind the level of measurement of the variables concerned. To begin with, we can concentrate on examples concerning pairs of variables (these kinds of analyses are known as ‘bivariate’). Figure 6.1 lists some of the analytical techniques that are employed when dealing with different combinations of categorical and continuous variables.

<table>
<thead>
<tr>
<th>Variable Type Combination</th>
<th>Analysis Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorical by Categorical</td>
<td>Crosstabs, Tables of Percentages, Clustered/stacked Bar Charts, Panelled Pie Charts</td>
</tr>
<tr>
<td>Categorical by Continuous</td>
<td>Tables of means (or other summary measures), Stacked/Grouped Histograms, Error Bars, Box Plots</td>
</tr>
<tr>
<td>Continuous by Continuous</td>
<td>Correlations, Scatterplots</td>
</tr>
</tbody>
</table>

Figure 6.1 Examples of analytical techniques associated with different combinations of Categorical and Continuous variables
Crosstabs (sometimes called ‘contingency tables’) are one of the most popular and useful ways to explore interactions and relationships between categorical variables and this will be the first technique that we explore.

The Crosstabs Procedure

Crosstabulation allows us to compare the number or percentage of cases that fall into each combination of the groups created when two or more categorical variables interact. A good way to begin using crosstabs is to think about the data in question and to begin to form questions or hypotheses relating to the categorical variables in the dataset. These might include:

Is the respondents’ place of birth related to their type of employment?

Do married and unmarried people rate the ferry the service in the same way?

Are men and women equally likely to experience health problems?

Let’s begin by looking at the relationship between place of birth and employment type. To request crosstabs, from the main menu click:

Analyze

 Descriptive Statistics

 Crosstabs

The crosstabs dialog requires at least one variable to be added to the row dimension and one added to the column dimension. From the source variable list select:

Place of birth (placeofbirth)

Send the variable into the *Row(s)* dimensions by clicking the corresponding button. Click:

![Place of birth](image)

Now from the source variable list, select:

Type of paid employment (job)

Send the variable into the *Column(s)* dimensions by clicking the corresponding button. Click:
You may notice that the ‘OK’ button becomes active as we have now specified the minimum requirements to run the Crosstabs procedure with the default options. Figure 6.2 shows the completed dialog.

![Completed Crosstabs dialog with default settings](image)

Figure 6.2 Completed Crosstabs dialog with default settings

Run the procedure by clicking:

OK

The output is shown in figure 6.3:

Crosstabs

<table>
<thead>
<tr>
<th></th>
<th>Cases</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Valid</td>
<td>Percent</td>
<td>Missing</td>
<td>Percent</td>
<td>Total</td>
</tr>
<tr>
<td>Place of birth * The type of paid employment</td>
<td>N</td>
<td>Percent</td>
<td>N</td>
<td>Percent</td>
<td>N</td>
</tr>
<tr>
<td>Place of birth * The type of paid employment</td>
<td>330</td>
<td>100.0%</td>
<td>0</td>
<td>0.0%</td>
<td>330</td>
</tr>
</tbody>
</table>

Place of birth * The type of paid employment Crosstabulation

<table>
<thead>
<tr>
<th>Place of birth</th>
<th>Permanent</th>
<th>Seasonal</th>
<th>Other</th>
<th>None</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redvale Island</td>
<td>82</td>
<td>0</td>
<td>2</td>
<td>63</td>
<td>147</td>
</tr>
<tr>
<td>Elsewhere in Ruritania</td>
<td>85</td>
<td>2</td>
<td>2</td>
<td>42</td>
<td>131</td>
</tr>
<tr>
<td>Elsewhere in Europe</td>
<td>22</td>
<td>8</td>
<td>0</td>
<td>7</td>
<td>37</td>
</tr>
<tr>
<td>Elsewhere in the World</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>

Figure 6.3 Basic Crosstabs showing just frequency counts in the cells
Apart from the initial ‘Case Processing Summary’ table which indicates that there were no missing values and that all 330 records were present, the crosstab itself simply shows how many respondents fell into the different groups regarding their place of birth and type of paid employment. The values where the frequency counts appear are referred to as the cells in the table. We can also see that it makes no difference which variable is in the rows or the columns as the frequency counts have no direction. The simplicity of the table however betrays the fact that it’s hard to compare one group to another. This is because as the column and row totals show, the group sizes are different. For example, there are 147 people born on Redvale Island but only 37 born elsewhere in Europe. Let’s re-run the crosstab and request further statistics in the cells that will enable us to compare the proportional differences more effectively. From the main menu click:

Analyze

Descriptive Statistics

Crosstabs

The dialog is retrieved with the variables still in their respective dimensions. To compare the respondents born in different locations in terms of their employment type, click the button marked:

Cells...

This opens a sub-dialog where we can request additional statistics. You can see that Observed Counts are already selected. In the area marked ‘Percentages’, check the box marked:

Row

Figure 6.4 shows the Cells sub-dialog.
Figure 6.4 Requesting Row Percentages to be displayed in a Crosstab Cells

To run the updated crosstab, click:

Continue

OK

The Output is displayed in figure 6.5.

Place of birth × The type of paid employment Crosstabulation

<table>
<thead>
<tr>
<th>Place of birth</th>
<th>The type of paid employment</th>
<th>Count</th>
<th>Seasonal</th>
<th>Other</th>
<th>None</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Permanent</td>
<td>Seasonal</td>
<td>Other</td>
<td>None</td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>Redvale Island</td>
<td>Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>82</td>
<td>0</td>
<td>2</td>
<td>63</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Place of birth</td>
<td>55.8%</td>
<td>0.0%</td>
<td>1.4%</td>
<td>42.9%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Elsewhere in Runitania</td>
<td>Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>2</td>
<td>2</td>
<td>42</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Place of birth</td>
<td>64.9%</td>
<td>1.5%</td>
<td>1.5%</td>
<td>32.1%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Elsewhere in Europe</td>
<td>Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>8</td>
<td>0</td>
<td>7</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Place of birth</td>
<td>59.5%</td>
<td>21.6%</td>
<td>0.0%</td>
<td>19.9%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Elsewhere in the World</td>
<td>Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Place of birth</td>
<td>33.3%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>66.7%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>194</td>
<td>10</td>
<td>4</td>
<td>122</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td></td>
<td>% within Place of birth</td>
<td>58.8%</td>
<td>3.0%</td>
<td>1.2%</td>
<td>37.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Figure 6.5 Crosstab showing frequency counts and row percentages

So now we can see that an extra row has been added for each level of the ‘Place of Birth’ variable. The new row label says % within Place if birth’. It is easier to compare these groups using percentages, as we can now say that, for example, 55.8% of those respondents born on
the island are in permanent jobs as opposed to 64.9% of those born ‘Elsewhere in Ruritania’. Furthermore, the crosstab indicates that 21.6% of those born ‘Elsewhere in Europe’ are in ‘Seasonal’ employment. This is the largest proportion by far but notice that the frequency count in the cells indicates that this group is comprised of only 8 cases. So, although adding percentages does make the crosstab more interpretable, it’s important to include the frequency counts as we need to bear in mind that some of the groups sizes are relatively small. Only 37 respondents in total were born ‘Elsewhere in Europe’ and only 15 were born ‘Elsewhere in the World’.

Let’s see the effect of adding more information to the cells. From the main toolbar, click the ‘Recall recently used dialogs’ button:

![Crosstabs](image)

Cells

In the area marked ‘Percentages’, check the box marked:

Column

Figure 6.6 shows the completed Cells sub-dialog.

![Cells sub-dialog](image)

Figure 6.6 Requesting Row and Column Percentages in a Crosstab

To run the updated crosstab, click:
The Output is displayed in figure 6.7.

Figure 6.7 Crosstab with Row and Column percentages in the cells

The crosstab is now looking a lot larger and more complex than before. Again, an extra row of values has been added. This time, the numbers relate to the percentage within ‘The type of paid employment’ which is the column variable. Here we can see that although 55.8% of the respondents born on the island are in permanent employment (which is 82 out of a row total of 147 cases), of those in permanent employment, 42.3% were born on the island (which is 82 out of a column total of 194). We can also see that 80% of the 10 seasonal workers are people born elsewhere in Europe.

We can see that crosstabs can convey a great deal of detailed insight when comparing the interactions between categorical variables. Let’s look at adding a third dimension to a crosstab with a new example.

From the main toolbar, click the ‘Recall recently used dialogs’ button:

Crosstabs
Reset
The crosstab dialog is now reset to its default settings. From the source variable list choose the variable we created in the last chapter:

Marital Status (simplified) [marital3]

...and add it to the rows dimension. Now choose the rating scale variable,

Facilities for small children (rating6)

...and add it to the columns dimension.

Request ‘Row Percentages’ to be displayed in the cells and click:

OK

The output is displayed in figure 6.8.

<table>
<thead>
<tr>
<th>Marital Status (simplified)</th>
<th>Facilities for Small Children?</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Excellent</td>
<td>Very Good</td>
</tr>
<tr>
<td>Married</td>
<td>110</td>
<td>49</td>
</tr>
<tr>
<td>% within Marital Status (simplified)</td>
<td>64.0%</td>
<td>28.5%</td>
</tr>
<tr>
<td>Never Married</td>
<td>56</td>
<td>33</td>
</tr>
<tr>
<td>% within Marital Status (simplified)</td>
<td>57.7%</td>
<td>34.0%</td>
</tr>
<tr>
<td>Previously Married</td>
<td>28</td>
<td>21</td>
</tr>
<tr>
<td>% within Marital Status (simplified)</td>
<td>51.9%</td>
<td>38.9%</td>
</tr>
<tr>
<td>Total</td>
<td>194</td>
<td>103</td>
</tr>
<tr>
<td>% within Marital Status (simplified)</td>
<td>60.1%</td>
<td>31.9%</td>
</tr>
</tbody>
</table>

Figure 6.8 Crosstab showing Marital Status (simplified) against rating of ‘Facilities for Small children’

You can see that there are some marked differences between people of different marital statuses and their evaluation of the ferry service’s facilities for small children. Exactly 64% of married respondents rate this aspect of the ferry’s service as ‘Excellent’ compared to only 51.9% of those previously married. It would be interesting to break this relationship down further by finding out if these differences are true for male and female respondents. To do so, from the main toolbar, click the ‘Recall recently used dialogs’ button:

![Recall Recently Used Dialogs](image)

Crosstabs

Choose the variable:
Gender of respondent (gender)

...and add it to the box marked:

Layer

The completed dialog is shown in figure 6.9.

![Crosstabs dialog](image)

Figure 6.9 Crosstab dialog with an additional variable in the Layer box

To run the procedure, click:

Ok

The output is shown in figure 6.10
Figure 6.10 Crosstab output split by layer variable ‘Gender of respondent’

What is striking from the crosstab output, is that the effect of adding the gender variable as a layer field shows that although the difference between married and previously married respondents in terms of their likelihood to rate ‘facilities for small children’ as ‘Excellent’ is still present, this is particularly true for male respondents. In fact, close to 70% of male respondents who were classed as either married or never married rate this aspect of the service as ‘Excellent’. Again, this shows the power of crosstabs to reveal complex interactions within categorical variables.

Let’s look at a couple of final examples using the Crosstabs procedure, or rather let’s look at an example of using crosstabs in conjunction with a test of statistical significance.
The Chi Square Test

The chi square test (also known as ‘Pearson’s Chi-Squared Test’) was developed in 1900. It’s a popular statistical test primarily because it is such a useful addition to the crosstabs procedure. Chi Square tests are often the first ‘significance test’ that students of statistics are introduced to. Although we don’t have time to go into the statistical theory that underpins the test, we can illustrate how it is applied with a simple example.

Once again, from the main toolbar, click the ‘Recall recently used dialogs’ button:

Crosstabs

Clear the crosstab by clicking:

Reset

From the source variable list, choose the variable:

Gender of respondent (gender)

And add it to the ‘Row(s)’ box. From the source variable list, choose the variable:

Value for money (rating1)

And add it to the ‘Column(s)’ box

Click the ‘Cells’ button and request that row percentages are displayed.

Now click the button marked:

Statistics

You may notice that there are a number of statistical tests one could choose. From the sub-dialog, check the box marked:

Chi-square

Figure 6.11 shows the completed sub-dialog.
Figure 6.11 Requesting a Chi-square test

To run the procedure, click:

Continue

OK

The generated output is shown in figure 6.12.

The crosstab shows some apparent differences in the way in which male and female respondents have evaluated the ferry service in terms of ‘value for money’. Note that 31.5% of female respondents have rated the service as ‘Excellent’ in this respect compared to 23.9% of male respondents. Considering this discrepancy between the sexes in the crosstab output, we might ask ourselves whether the magnitude of the differences is so small that we would expect to see them in many cases, or whether they are so large that we would only encounter them relatively rarely. This is what researchers mean when they talk about statistical ‘significance’. Looking that the table below the crosstab, we can see the Pearson Chi-Square test itself.
The chi-square test is used to assess whether two categorical variables are independent of one another *in the population*. To put that in practical terms, our data is drawn from a sample, so it could be that the differences we’re seeing between males and females here, are simply the result of sampling variation (the fact that no two data samples are likely to give *exactly* the same results). The column marked ‘Asymptotic Significance (2-sided)’ shows us a probability value that allows us to assess how often these sorts of differences would occur due to chance. In this case, the value for Pearson Chi-Square is 0.177 (equivalent to 17.7%). In statistical analysis, the convention follows that this is too large a value to regard this relationship is ‘statistically significant’ as it indicates that differences of this magnitude can occur too often due to random variation to assume that female respondents *really do* rate the ferry service in terms of ‘value for money’ differently from male respondents.

The most common rule of thumb is that the significance value (technically speaking, this is *the probability that the null hypothesis is true*) should be no larger than 0.05 (5%) before regarding an observed relationship as statistically significant. Let’s run one last crosstab. From the main toolbar, click the ‘Recall recently used dialogs’ button:

Figure 6.12 Crosstab output with associated Chi-square test of significance
Swap the variable ‘Value for money (rating 1)’ in the columns dimension with the variable ‘Facilities for small children (rating 6)’. Now click:

OK

The output is shown in figure 6.13.

![Figure 6.13 Second crosstab output with associated Chi-square test of significance](image)

Notice that 67.5% of male respondents have evaluated this aspect of the ferry service as ‘Excellent’ compared to 54.4% of females. Indeed, twice as many female respondents as males have indicated that they thought the facilities for small children were ‘Poor’. In this case, the Chi-Square test of significance shows a value of .034 (equivalent to 3.4%) this below the .05 (5%) threshold so we would regard this relationship as ‘significant’.

Thus far we have used the crosstabs procedure as an example of a technique we can employ to examine the relationships between categorical variables. In the next section, we will see a procedure that enables us to examine the relationships between categorical and continuous variables.
The Means Procedure

A simple approach to comparing the groups within a categorical variable in terms of a continuous variable is to use a summary statistic. Summary statistics such as sums, means or median values can be used to compare one group to another. As an example, from the main menu click:

Analyze

Compare Means

Means

The Means dialog is generated. Despite its title, the Means procedure can be used to compare groups in terms of many more summary measures than arithmetic averages. You may also notice that the dialog is made up of two boxes marked ‘Dependent List’ and ‘Layer 1 of 1’. In this case we can think of the top dependent box as the place where we send **continuous** variables (or whichever variable we wish to use a summary measure such as an average with) and the bottom **layer** box as the target location for the categorical field (or the variable containing the groups we want to compare).

From the source variable list, select the variable:

Age of respondent (Age)

And send it to the box marked ‘Dependent List’. Now, select the variable:

Health problems? (healthy)

And send it to the box marked ‘Layer 1 of 1’. The complete dialog is shown in figure 6.14.

To run the procedure, click:

OK

The resultant output is shown in figure 6.15.
Figure 6.14 Completed Means Dialog

The means output is fairly straightforward to interpret. It shows that the average age of the 295 people who report having no health problems is 43.37 whereas for the 35 people who indicated that they do have health problems, the mean age is 65.6 years. For all 330 respondents in the sample, the mean age is 45.73. You may also notice that by default the output includes the standard deviation value for each group. Standard Deviations are known as measures of dispersion as they indicate the degree of ‘spread’ within each of the groups. In
other words, these values quantify the average amount by which the individual members of a group differ from the overall mean value for the group. Let us return now to the means procedure and explore it a little further. From the main toolbar, click the ‘Recall recently used dialogs’ button:

Means

From the returned dialog, within the Layer box where it says, ‘Layer 1 of 1’, click:

Next

The box now appears empty and has the title ‘Layer 2 of 2’. From the source variable list, click:

Gender of respondent (gender)

Now let’s enhance the procedure with additional statistical measures. Click the button marked:

Options

A sub-dialog is generated offering you the opportunity to change which measures are displayed in the means procedure. As you can see there are several additional measures. From the list choose:

- Median
- Minimum
- Maximum

...and click the selection button each time:

The completed sub-dialog is shown in figure 6.16.
Figure 6.16 Sub-Dialag for additional measures for Means Procedure

To run the procedure, click:

Continue

OK

Figure 6.17 shows the results.

Figure 6.17 Layered Means report with additional summary measures
Interestingly, the layered report shows that for those with health problems, there is a marked difference in the average age of male and female respondents (57 and 72.5 respectively). The means procedure is a simple but powerful tool for exploring group differences between combinations of continuous and categorical variables. At this point, we can briefly introduce the concept of using pivot trays with SPSS output tables. Pivoting allows us to alter the display of values and fields within tables by transposing fields, moving rows and columns or creating multidimensional layers. To activate the pivot controls:

Double click on the table of means in the output viewer

You may notice that a dotted line appears around the outside of the table. To request the pivot trays, from the main menu within the viewer window, click:

Pivot

Pivoting trays

The pivoting tray is generated. To illustrate how we can use the tray to manipulate the dimensions in the table,

Click the icon next to the word ‘Statistics’ and drag it to the empty slot in the top left box under the word ‘Variables’ (in the ‘Layer’ dimension)

Now:

Click the icon next to the word ‘Gender’ and drag it to the empty slot in the top right box previously occupied by the ‘statistics’ icon (in the columns dimension)

Figure 6.18 illustrates this process. The results of this process are shown in figure 6.19.
Figure 6.18 Using pivot trays to change table appearances

Figure 6.19 Pivoted Means table with statistics measures layered
As the statistical measures have now been placed in the layer dimension, we can interact with them and choose to display one at a time. As shown in figure 6.20, using the drop-down menu we can now choose to display a different summary measure such as a median.

![Pivoted Means table interacting with the layered statistics](image)

Figure 6.20 Pivoted Means table interacting with the layered statistics

Later in the course we will take another look at interacting with SPSS Statistics output. For now, we can turn our attention to analysing the relationships between pairs of continuous variables.

The Correlations Procedure

In this section of the course, we have used two procedures to help us investigate the relationships between exclusively categorical variables (crosstabs) or combinations of categorical and continuous fields (the ‘Means’ procedure). In this next example, we will see how we can employ correlation coefficients to examine the relationship between pairs of continuous fields. The best way to illustrate how correlation measures work is to think of how we normally visualize the relationships between pairs of continuous variables. Scatterplots are the graphical equivalent of correlation coefficients. A correlation coefficients is a single value that indicates how strong the linear relationship is between the two variables and whether the relationship is positive or negative. If we look at the charts in figure 6.21 we can see different scatterplots with various correlation values. It is important to understand that correlation coefficients always range from -1 to +1. If we were to request a correlation of a continuous variable against a copy of itself we would find that the correlation value was 1.00 indicating that the variable is perfectly correlated with its copy. A positive value simply indicates that high values in one variable are associated with high values in another. A negative correlation indicates that as one value rises the other tends to fall (such as alcohol intake and reflex reaction time).
Figure 6.21 Illustration of various correlation values and their associated scatterplots

Figure 6.21 contains a number of scatterplots of pairs of continuous variables. Each measure relates to an aspect of a car’s performance or history. In fact, each point in the scatterplots represents the individual make and model of an automobile. Chart A shows a strong positive correlation between horsepower and vehicle weight (0.86). This simply illustrates that on average, the weight of a car is highly correlated with its horsepower. In fact, we can see that this relationship is linear in nature as it tends to follow a straight line. Chart B on the other hand illustrates a positive relationship between the time to accelerate from 0 to 60 mph and
the miles per gallon of gasoline consumption. In other words, the longer a vehicle takes to reach 60 mph from a standing start, the more efficient its overall fuel consumption is. We can see from the chart that the relationship is a little more random (or ‘noisy’) and as such, the correlation value, although positive, is weaker (0.43) than the previous example. Chart C shows a strong negative relationship (-0.7) between time to accelerate and horsepower. Here we can see that cars with a lot of horsepower take less time to reach 60 mph that those with less horsepower: as one value increases the other tends to decrease. Chart D illustrates the limitations of correlations although it shows a strong negative relationship (-0.67) it is not well expressed by a straight line. We can conclude from this that weak correlations don’t necessarily indicate that there is no relationship, just that there is no linear relationship. In this example, the correlation value would be even stronger if the relationship was less curvilinear. Finally chart E shows that when the relationship is effectively random, the correlation value is close to zero.

To generate our own correlations for continuous variables, from the main menu click:

Analyse
 Correlate
 Bivariate

This generates the correlation dialog. From the source variable list choose the following variables:

Age of respondent (age)
Hours worked per week (workhrs)
Year arrived in Redvale (resideyr)

Notice that the type of correlation is indicated by the check box marked ‘Pearson’.

The completed dialog is shown in figure 6.22. To run the procedure, click:

OK

The output is shown in figure 6.23.
We’ve only asked for correlations for three variables, yet the output shows a table with three values each in nine cells. Of course, the cells running diagonally from left to right show a correlation of 1 as each variable is being correlated with itself. However, if we look at the middle cell in the first column, we can see that this is the correlation of ‘Hours worked per week’ against ‘Age of respondent’. Here the value is -0.209 indicating a weak negative correlation (older people tend to work fewer hours). We can also see that the middle value corresponds with the row label ‘Sig. (2-tailed)’. This is a test of significance that tells us that although the correlation is weak, it is unlikely to be the result of chance (technically speaking...
Analysing Relationships Between Variables

this is testing the null hypothesis that the correlation is actually equal to zero in the population). The double asterisk next to the correlation value itself simply tells us that the significance value is below .01 (the 1% level). Generally, the significance value is not very interesting in correlation analysis since it doesn’t indicate that the correlation is particularly strong, merely that the value is large enough to not be regarded as a random fluctuation. The last value in each of the cells is the number of cases that were used to calculate the correlation. Although our strongest correlation is a negative relationship between the year the respondent arrived in Redvale and their age (a correlation value of -.674) we can see that only 189 out of 330 cases was used in the calculation. This of course is because a large proportion of people were born on the island and they are coded as ‘Not Applicable’ (missing). The third correlation is a reasonably strong positive one with a value of .394. This is between year of arrival on the island and hours worked per week, indicating that the more recent the arrival of the respondent the more hours they work.

Earlier in the course we discussed the fact that sometimes ordinal data are treated as if the variables were continuous in nature. This is particularly true when researchers wish to calculate average scores with rating scales. In fact, within statistical research, there are a number of procedures that make less stringent assumptions about the nature of the data that you may be working with. These procedures are referred to as non-parametric techniques. The correlations procedure in SPSS Statistics includes a non-parametric technique known as Spearman’s correlation that is often used when analysing correlations between pairs of ordinal variables. To demonstrate this, from the main toolbar, click:

Bivariate Correlations

Reset

The dialog is now cleared back to its default setting, from the source variable list choose the following ordinal variables:

- Value for money (Rating1)
- Comfortable Environment (Rating2)
- Courtesy of Ferry Staff (Rating3)
- Regularity of service (Rating4)
- Ferry Cafeteria (Rating5)
- Facilities for Small Children (Rating6)
- Journey Time (Rating7)

Within the dialog...

Uncheck the box marked Pearson

Check the box marked Spearman

The completed dialog is shown in figure 6.24.
Figure 6.24 Completed Correlations dialog with Spearman correlation selected

To run the procedure, click:

OK

The initial output is shown in figure 6.25.

Figure 6.25 Spearman correlation matrix

As we can see, the procedure has created a large table with lot of values. To make it easier to focus on the Spearman correlation values themselves, double-click on the output table and
use the pivoting tray to send the statistics to the layers dimension so that the output looks like figure 6.26.

Nonparametric Correlations

<table>
<thead>
<tr>
<th>Correlation Coefficient</th>
<th>Value for money</th>
<th>Comfortable Environment</th>
<th>Courtesy of Ferry Staff</th>
<th>Regularity of service</th>
<th>Ferry Cafeteria</th>
<th>Facilities for small Children?</th>
<th>Journey Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spearman’s rho</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000</td>
<td>.015</td>
<td>.090</td>
<td>.102</td>
<td>.000</td>
<td>.177**</td>
<td>.195</td>
</tr>
<tr>
<td></td>
<td>.015</td>
<td>1.000</td>
<td>-0.085</td>
<td>.085</td>
<td>-0.35</td>
<td>.069</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>.090</td>
<td>-0.085</td>
<td>1.000</td>
<td>.150</td>
<td>.068</td>
<td>-0.043</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.102</td>
<td>.085</td>
<td>-0.050</td>
<td>1.000</td>
<td>.079</td>
<td>.008</td>
<td>0.132</td>
</tr>
<tr>
<td></td>
<td>.000</td>
<td>-0.035</td>
<td>-0.160</td>
<td>.079</td>
<td>1.000</td>
<td>.010</td>
<td>-0.066</td>
</tr>
<tr>
<td></td>
<td>.177**</td>
<td>.069</td>
<td>.088</td>
<td>.008</td>
<td>.010</td>
<td>1.000</td>
<td>.145**</td>
</tr>
<tr>
<td></td>
<td>.195**</td>
<td>.096</td>
<td>-0.043</td>
<td>.172</td>
<td>-0.066</td>
<td>1.000</td>
<td></td>
</tr>
</tbody>
</table>

** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

Figure 6.26 Pivoted Spearman Correlation table

The non-parametric correlation table, shows that although there are many statistically significant correlations, the values themselves are very weak so we shouldn’t spend too much time concerning ourselves with them.

In this section, we have looked at three key methods for analysing relationships between variables with different combinations of measurement level. In the next section, we will return to the ‘Transform’ menu to look at how we can further enhance the analysis process by creating new variables.